Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Belli Sundaram Krishnamoorthy, ${ }^{\text {a }}$ Thanjavur Ramabhadran Sarangarajan, ${ }^{\text {b }}$ Kanagasabapathy Thanikasalam, ${ }^{\text {a }}$ Krishnaswamy Panchanatheswaran ${ }^{\mathrm{a} *}$ and Ramasubbu Jeyaraman ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India, and ${ }^{\text {b }}$ Department of Chemistry, Shanmugha Arts Science Technology and Research Academy (SASTRA), Tirumalaisamudram, Thanjavur, India

Correspondence e-mail:
panch_45@yahoo.co.in

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.053$
$w R$ factor $=0.146$
Data-to-parameter ratio $=15.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

r-2,c-6-Bis(4-chlorophenyl)-3,5-dimethyl-tetrahydropyran-t-4-ol

The crystal and molecular structure of the title compound, $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{2}$, reveals a chair conformation for the pyran ring in which the hydroxyl group is axially oriented. All the other substituent occupy equatorial positions. There are two molecules in the asymmetric unit.

Comment

Pyran derivatives are important constituents of many vitamin derivatives and antiulcer drugs, such as alpha tocopherol (vitamin E) (Finar, 1989) and methantheline (Parimoo, 1999). Persubstituted pyrans are easily synthesized, and their ring conformations can serve as comparative models for their cyclohexane counterparts. Molecules with a pyran-derived ring can assume planar (Kumar \& Errington, 1999), twist boat (Usman et al., 2002), sofa (Ray et al., 1998) and chair (Belakhov et al., 2002) conformations, depending upon the level of unsaturation and the nature of the substituents on the ring. This investigation was undertaken to assign the conformation of the pyran ring and the orientation of the hydroxyl group in the title molecule, (I).

There are two molecules in the asymmetric unit of (I). The pyran rings are in chair conformations, as shown in Fig. 1. The torsion angles around the bonds involving the ring atoms deviate from the value of 56° expected for a perfect chair conformation (Kalsi, 1997). The bond lengths within the pyran ring are in the range 1.425 (3)-1.540 (4) \AA (for molecule 1 containing atom O1) and 1.447 (3)-1.540 (3) \AA (for molecule 2 containing atom $\mathrm{O} 1 A$). The ranges of bond angles are 108.56 (19)-114.78 (18) ${ }^{\circ}$ (for molecule 1) and 107.4 (2)112.57 (17) ${ }^{\circ}$ (for molecule 2). The configurations of chiral atoms C2, C3, C5 and C6 in molecule 1 are found to be S, S, S and R, respectively, which are identical to those of their counterparts in molecule 2. However, the compound crystallizes as a racemic mixture in the space group $P 2_{1} / c$. The relative orientations of the two chlorophenyl groups differ in the two molecules, as shown by the dihedral angles between

Received 11 November 2002 Accepted 19 December 2002 Online 10 January 2003

Figure 1
The asymmetric unit, with displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity.

Packing diagram showing the layer structure formed by the intermolecular association of molecules via hydrogen bonds.
the two rings of $44.01(1)^{\circ}$ in molecule 1 and $51.01(1)^{\circ}$ in molecule 2. The equatorial orientations of all substituents except the hydroxyl groups are confirmed by the torsion angles close to 180°; compare the external atom and the other three ring atoms as observed in the pentasubstituted cyclo-hexan-1-one derivative (Sarangarajan et al., 2002). The hydroxyl groups are oriented axially, as confirmed by the average of the $\mathrm{C} 7-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 8$ torsion angles of $61.85(3)^{\circ}$, which is close to the ideal value of 60° (Nasipuri, 1992).

In the crystal structure, the molecules are assembled in layers. Adjacent layers interact through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonding involving atoms O 8 and $\mathrm{O} 1 A\left(1-x, \frac{1}{2}+y, \frac{1}{2}-z\right)$, at a distance of 2.850 (3) \AA with an angle of $163(3)^{\circ}$ around atom H8. There is another interaction between $\mathrm{O} 8 A$ and $\mathrm{O} 8\left(x, \frac{3}{2}-y, \frac{1}{2}+z\right)$, at a distance of 2.833 (3) Å with an angle of 152 (3) ${ }^{\circ}$ around atom H8 A (Fig. 2 and Table 2).

Experimental

The title compound, (I), was obtained by the reduction of tetra-hydropyran-4-one with aluminium isopropoxide in propan-2-ol. The
white solid was separated by chromatography over silica gel and eluted with a hexane-dichloromethane mixture (1:10). Diffraction quality crystals of (I) were obtained by recrystallization from a di-chloromethane-hexane mixture.

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{2}$
$M_{r}=351.25$
Monoclinic, $P 2_{1 / c} c$
$a=12.1315$ (9) \AA
$b=11.7075$ (19) \AA
$c=26.177$ (3) \AA
$\beta=99.728(9)^{\circ}$
$V=3664.4$ (8) \AA^{3}
$Z=8$
$D_{x}=1.273 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=2-12^{\circ}$
$\mu=0.36 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Plate, colourless
$0.2 \times 0.2 \times 0.1 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.650, T_{\text {max }}=0.999$
7004 measured reflections
6670 independent reflections
5034 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& R_{\text {int }}=0.027 \\
& \theta_{\max }=25.3^{\circ} \\
& h=0 \rightarrow 14 \\
& k=0 \rightarrow 14 \\
& l=-31 \rightarrow 31 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 100 \text { reflections } \\
& \quad \text { intensity decay: negligible }
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.146$
$S=1.06$
6670 reflections
423 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.059 P)^{2}\right. \\
& +2.0872 P \text {] } \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.50 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.42 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL } \\
& \text { Extinction coefficient: } 0.0046 \text { (5) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

O1-C6	1.431 (3)	O1A-C2A	1.447 (3)
O1-C2	1.425 (3)	O1 $A-\mathrm{C} 6 A$	1.447 (3)
O8-C4	1.437 (3)	$\mathrm{O} 8 A-\mathrm{C} 4 A$	1.431 (3)
C2-O1-C6	114.78 (18)	O1-C6-C16	106.96 (19)
$\mathrm{C} 2 A-\mathrm{O} 1 A-\mathrm{C} 6 A$	112.57 (17)	$\mathrm{O} 1 A-\mathrm{C} 2 A-\mathrm{C} 10 A$	109.24 (19)
O1-C2-C10	106.90 (19)	$\mathrm{O} 1 A-\mathrm{C} 6 A-\mathrm{C} 16 A$	108.33 (18)
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 16$	178.0 (2)	C9-C5-C6-O1	-178.8 (2)
$\mathrm{C} 2 A-\mathrm{O} 1 A-\mathrm{C} 6 A-\mathrm{C} 16 A$	178.74 (18)	$\mathrm{C} 10 A-\mathrm{C} 2 A-\mathrm{C} 3 A-\mathrm{C} 4 A$	177.1 (2)
$\mathrm{C} 10-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-174.7 (2)	$\mathrm{C} 7 A-\mathrm{C} 3 A-\mathrm{C} 4 A-\mathrm{C} 5 A$	-175.0 (2)
C7-C3-C4-C5	-177.6 (2)	$\mathrm{C} 7 A-\mathrm{C} 3 A-\mathrm{C} 4 A-\mathrm{O} 8 A$	62.8 (3)
C7-C3-C4-O8	60.9 (3)	$\mathrm{O} 8 A-\mathrm{C} 4 A-\mathrm{C} 5 A-\mathrm{C} 6 A$	64.4 (3)
O8-C4-C5-C6	63.4 (2)	$\mathrm{C} 9 A-\mathrm{C} 5 A-\mathrm{C} 6 A-\mathrm{O} 1 A$	178.4 (2)

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 8-\mathrm{H} 8 \cdots \mathrm{O} 1 A^{\mathrm{i}}$	$0.84(4)$	$2.04(4)$	$2.850(3)$	$163(3)$
$\mathrm{O} 8 A-\mathrm{H} 8 A \cdots \mathrm{O} \mathrm{B}^{\text {ii }}$	$0.81(3)$	$2.09(3)$	$2.833(3)$	$152(3)$
$\mathrm{C} 4 A-\mathrm{H} 4 A \cdots \mathrm{Cl} 1^{\text {iii }}$	0.98	2.61	$3.563(3)$	164
$\mathrm{C} 6 A-\mathrm{H} 6 A \cdots \mathrm{O} 8 A^{\text {iv }}$	0.98	2.56	$3.380(3)$	141
Symmetry				

Symmetry codes: (i) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$; (ii) $x, \frac{3}{2}-y, \frac{1}{2}+z$; (iii) $-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iv) $1-x, 1-y, 1-z$.

The H atoms of the hydroxyl groups were located from a difference Fourier map and their positions refined. The $\mathrm{O}-\mathrm{H}$ distances
were computed to be 0.84 (4) and 0.81 (3) \AA. H atoms attached to C atoms were included in calculated positions, with displacement parameters fixed at $1.2 U_{\text {eq }}$ of their carrier atoms. The displacement parameters of the H atoms of both the hydroxyl groups were fixed at $1.5 U_{\text {eq }}$ of the respective O atoms during the refinement.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 1990).

TRS thanks the Vice-Chancellor and Management of SASTRA for their support and encouragement.

References

Belakhov, V., Botoshansky, M. \& Baasov, T. (2002). Acta Cryst. C58, m450m452.

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Finar, I. L. (1989). Organic Chemistry, Vol. 2: Stereochemistry and the Chemistry of Natural Products, 5th ed, pp. 851-853. Singapore: Longman.
Kalsi, P. S. (1997). Stereochemistry: Conformation and Mechanism, pp. 236. New Delhi: New Age International.
Kumar, R., Parmar V. S. \& Errington, W. (1999). Acta Cryst. C55, 561-563.
Nasipuri, D. (1992). Stereochemistry of Organic Compounds - Principles and Applications, pp. 256-258. New Delhi: Wiley Eastern.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Parimoo, P. (1999). A Text Book of Medicinal Chemistry, p. 208, New Delhi: CBS Publishers.
Ray, S., Sarkhel, S., Maulik, P. R., Lobkovsky, E. \& Clardy, J. (1998). Acta Cryst. C54, 134-136.
Sarangarajan, T. R., Panchanatheswaran, K., Thanikachalam, K. \& Jeyaraman, R. (2002). Acta Cryst. E58, o1053-o1054.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Usman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Zhao, B.-G. \& Xu, J.-H. (2002). Acta Cryst. C58, o57-o58.

